Extensions 1→N→G→Q→1 with N=C22 and Q=C2×Dic7

Direct product G=N×Q with N=C22 and Q=C2×Dic7
dρLabelID
C23×Dic7224C2^3xDic7224,187

Semidirect products G=N:Q with N=C22 and Q=C2×Dic7
extensionφ:Q→Aut NdρLabelID
C221(C2×Dic7) = D4×Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C22112C2^2:1(C2xDic7)224,129
C222(C2×Dic7) = C2×C23.D7φ: C2×Dic7/C2×C14C2 ⊆ Aut C22112C2^2:2(C2xDic7)224,147

Non-split extensions G=N.Q with N=C22 and Q=C2×Dic7
extensionφ:Q→Aut NdρLabelID
C22.1(C2×Dic7) = Q8.Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C221124C2^2.1(C2xDic7)224,143
C22.2(C2×Dic7) = C28.D4φ: C2×Dic7/C2×C14C2 ⊆ Aut C22564C2^2.2(C2xDic7)224,39
C22.3(C2×Dic7) = C23⋊Dic7φ: C2×Dic7/C2×C14C2 ⊆ Aut C22564C2^2.3(C2xDic7)224,40
C22.4(C2×Dic7) = C28.10D4φ: C2×Dic7/C2×C14C2 ⊆ Aut C221124C2^2.4(C2xDic7)224,42
C22.5(C2×Dic7) = C23.21D14φ: C2×Dic7/C2×C14C2 ⊆ Aut C22112C2^2.5(C2xDic7)224,121
C22.6(C2×Dic7) = C4×C7⋊C8central extension (φ=1)224C2^2.6(C2xDic7)224,8
C22.7(C2×Dic7) = C42.D7central extension (φ=1)224C2^2.7(C2xDic7)224,9
C22.8(C2×Dic7) = C28⋊C8central extension (φ=1)224C2^2.8(C2xDic7)224,10
C22.9(C2×Dic7) = C28.55D4central extension (φ=1)112C2^2.9(C2xDic7)224,36
C22.10(C2×Dic7) = C14.C42central extension (φ=1)224C2^2.10(C2xDic7)224,37
C22.11(C2×Dic7) = C22×C7⋊C8central extension (φ=1)224C2^2.11(C2xDic7)224,115
C22.12(C2×Dic7) = C2×C4.Dic7central extension (φ=1)112C2^2.12(C2xDic7)224,116
C22.13(C2×Dic7) = C2×C4×Dic7central extension (φ=1)224C2^2.13(C2xDic7)224,117
C22.14(C2×Dic7) = C2×C4⋊Dic7central extension (φ=1)224C2^2.14(C2xDic7)224,120

׿
×
𝔽